skip to main content


Search for: All records

Creators/Authors contains: "Chatterjee, Baibhab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sensors in and around the environment becoming ubiquitous has ushered in the concept of smart animal agriculture which has the potential to greatly improve animal health and productivity using the concepts of remote health monitoring which is a necessity in times when there is a great demand for animal products. The data from in and around animals gathered from sensors dwelling in animal agriculture settings have made farms a part of the Internet of Things space. This has led to active research in developing efficient communication methodologies for farm networks. This study focuses on the first hop of any such farm network where the data from inside the body of the animals is to be communicated to a node dwelling outside the body of the animal. In this paper, we use novel experimental methods to calculate the channel loss of signal at sub-GHz frequencies of 100 - 900 MHz to characterize the in-body to out-of-body communication channel in large animals. A first-of-its-kind 3D bovine modeling is done with computer vision techniques for detailed morphological features of the animal body is used to perform Finite Element Method based Electromagnetic simulations. The results of the simulations are experimentally validated to come up with a complete channel modeling methodology for in-body to out-of-body animal body communication. The experimentally validated 3D bovine model is made available publicly on https://github.com/SparcLab/Bovine-FEM-Model.git GitHub. The results illustrate that an in-body to out-of-body communication channel is realizable from the rumen to the collar of ruminants with $\leq {90}~{\rm dB}$ path loss at sub-GHz frequencies ( $100-900~MHz$ ) making communication feasible. The developed methodology has been illustrated for ruminants but can also be used for other related in-body to out-of-body studies. Using the developed channel modeling technique, an efficient communication architecture can be formed for in-body to out-of-body communication in animals which paves the way for the design and development of future smart animal agriculture systems. 
    more » « less
  2. With the expansion of sensor nodes to newer avenues of technologies, such as the Internet of things (IoT), internet of bodies (IoB), augmented reality (AR), and mixed reality, the demand to support high-speed operations, such as audio and video, with a minimal increase in power consumption is gaining much traction. In this work, we focus on these nodes operating in audio-based AR (AAR) and explore the opportunity of supporting audio at a low power budget. For sensor nodes, communicating one bit of data usually consumes significantly higher power than the power associated with sensing and processing/computing one data bit. Compressing the number of communication bits at the expense of a few computation cycles considerably reduces the overall power consumption of the nodes. Audio codecs such as AAC and LDAC that currently perform compression and decompression of audio streams burn significant power and create a floor to the minimum power possible in these applications. Compressive sensing (CS), a powerful mathematical tool for compression, is often used in physiological signal sensing, such as EEG and ECG, and it can offer a promising low-power alternative to audio codecs. We introduce a new paradigm of using the CS-based approach to realize audio compression that can function as a new independent technique or augment the existing codecs for a higher level of compression. This work, CS-Audio, fabricated in TSMC 65-nm CMOS technology, presents the first CS-based compression, equipped with an ON-chip DWT sparsifier for non-sparse audio signals. The CS design, realized in a pipelined architecture, achieves high data rates and enables a wake-up implementation to bypass computation for insignificant input samples, reducing the power consumption of the hardware. The measurement results demonstrate a 3X-15X reduction in transmitted audio data without a perceivable degradation of audio quality, as indicated by the perceptual evaluation of audio quality mean opinion score (PEAQ MOS) >1.5. The hardware consumes 238 μW power at 0.65 V and 15 Mbps, which is (~20X-40X) lower than audio codecs. 
    more » « less
  3. Recent advances in audio-visual augmented reality (AR) and virtual reality (VR) demands 1) high speed (>10Mbps) data transfer among wearable devices around the human body with 2) low transceiver (TRX) power consumption for longer lifetime, especially as communication energy/b is often orders of magnitude higher than computation energy/switching. While WiFi can transmit compressed video (HD 30fps, compressed @6-12Mbps), it consumes 50-to-400mW power. Bluetooth, on the other hand, is not designed for video transfer. New mm-Wave links can support the required bandwidth but do not support ultra-low-power (<1mW). In recent years, Human-Body Communication (HBC) [1]–[6] has emerged as a promising low-power alternative to traditional wireless communication. However, previous implementations of HBC transmitters (Tx) suffer from a large plate-to-plate capacitance (C p , between signal electrode and local ground of the transmitter) which results in a power consumption of aC p V2f (Fig. 16.6.1) in voltage-mode (VM) HBC. The recently proposed Resonant HBC [6] tries to overcome this problem by resonating C p with a parallel inductor (L). However, the operating frequency is usually < a few 10's of MHz for low-power Electro-Quasistatic (EQS) operation, resulting in a large/bulky inductor. Moreover, the resonant LC p circuit has a large settling time (≈5Q 2 RC P , where R is the effective series resistance of the inductor) for EQS frequencies which will limit the maximum symbol rate to <1MSps for a 21MHz carrier (the IEEE 802.15.6 standard for HBC), making resonant HBC infeasible for> 10Mb/s applications. 
    more » « less
  4. Continuous real-time health monitoring in animals is essential for ensuring animal welfare. In ruminants like cows, rumen health is closely intertwined with overall animal health. Therefore, in-situ monitoring of rumen health is critical. However, this demands in-body to out-of-body communication of sensor data. In this paper, we devise a method of channel modeling for a cow using experiments and FEM based simulations at 400 MHz. This technique can be further employed across all frequencies to characterize the communication channel for the development of a channel architecture that efficiently exploits its properties. 
    more » « less
  5. The emergence of Audio-based Augmented Reality has been calling for increasing data-rates for audio signals, with significant reduction in power to enable extremely energy-constrained sensor nodes. Typically, the communication power dominates sensing and computing power in a node [1]. For highly energy constrained scenarios, compressive sensing (CS) have been demonstrated (Fig. 1), where samples are first compressed at the sensor to contain the same information in a smaller number of samples, before transmitting to a receiver, where the signal is reconstructed. Previous CS works [2]-[5] have focused entirely on “sparse” physiological signals, operating in low speed regime. This work illustrates the first CS design, enabled with a discrete wavelet transform (DWT) sparsifier for catering to non-sparse signals such as high definition audio. Audio recording and playback are quite sensitive to quality, thereby requiring audio codecs, such as. aac, for efficient compression and decompression of audio streams, which usually consume power in the order of mW [6]. Audio inferencing operated in intelligent assistants are more tolerant to input quality, functioning effectively when the Perceptual Evaluation of Audio Quality Mean Opinion Score (PAEQ MOS) [7], an ITU-R standard objective metric for characterizing perceived audio quality, exceeds 1.5. CS presents an opportunity to achieve >10X reduction in transmitted audio data with orders of magnitude lower power, as compared to codecs. The design is implemented in 65 nm CMOS and consumes 238 uW power at 0.65 V and 15 Mbps. 
    more » « less